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Abstract: This study contributes to the recent experimental literature addressing the role of team 

formation in overcoming coordination failure in weakest-link games. We investigate the 

endogenous formation of teams in fixed neighborhoods in which it is not possible to exclude 

players from influencing the weakest-link. Our experimental results show that team formation 

helps in overcoming the coordination problem, raises equilibrium provision levels, but falls short 

of providing the Pareto-optimal contribution. As the problem of multiplicity of Nash equilibria in 

weakest-link games is exacerbated when team formation is introduced, we provide Quantal 

Response Equilibrium (QRE) and Agent QRE analyses. The analysis demonstrates that team 

formation would solve the problem with (almost) perfectly rational agents, but also that our 

experimental results are consistent with (A)QRE models under bounded rationality.  
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1. INTRODUCTION 

Coordination problems in weakest-link games prevail in different types of organizations, including 

families or teams in firms; and in the adoption of technology, production standards, or efforts to 

fight a pandemic, among others. In these settings, the smallest effort or contribution determines 

the payoff of all. There are multiple Nash equilibria, which can be Pareto-ranked, but as many 

experiments have confirmed, coordinating on the Pareto-optimal equilibrium is far from trivial in 

practice. There is a long experimental tradition aiming at identifying the determinants of 

coordination failure and success (Van Huick et al 1990; Cooper et al 1990; Cachon and Camerer 

1996; Feri et al 2010). The common pattern observed in coordination experiments with Pareto-

ranked equilibria are low contribution levels and a downward sloping trend of average and 

minimum contribution levels as the game proceeds (see Devetag and Ortmann 2007 for a review), 

which leads to overall inefficiency. It has been shown that such discouraging results can be 

alleviated, for example, by introducing financial incentives (Brandts and Cooper 2006; Hamman 

et al 2007), reducing effort costs (Goeree and Holt 2005; Brandts et al 2007), imposing costs to 

enter the game (Cachon and Camerer 1996), and advice by players who have played in previous 

rounds (Chauduhri et al 2009).  

In this study, we explore the role of team formation for coordination. The coordination problems 

we consider is the Van Huick et al (1990) weakest-link game, henceforth abbreviated VHBB, and 

the “riskier” weakest-link game, first introduced by Feri et al (2010), henceforth abbreviated FIS. 

In VHBB, agents have incentives to coordinate on high contribution levels, which result in high 

individual and group welfare, but also face strong strategic uncertainty, as one single player 

suffices to cause substantial losses to all other group members if her contributions are below those 

of others. In FIS, failure to coordinate entails even higher losses.1 The team formation process that 

we analyze allows, but does not force, agents to endogenously form teams whereby they agree on 

common effort levels by consensus. We consider situations with fixed neighborhood (group) 

composition. Therefore, outcomes derive from the effort of the endogenously formed team and 

also from individual efforts of those group members that do not participate in the team, if any. 

Hence, when all group members join the team, teams eliminate the strategic risk. However, as long 

                                                           
1  FIS introduce this payoff table to construct an environment which, intuitively, reinforces the attraction 

of choosing the worst outcome. Our theoretical analysis in section 5.1 proofs that this intuition is 

correct. 
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as one group member does not join the team, teams reduce the strategic risk but do not eliminate 

it.  

This study contributes to a recent and (still) small literature addressing how the type of 

interaction among group members and the institutional setting affect coordination outcomes in 

coordination games. Weber (2006) shows that small groups that coordinate efficiently can slowly 

grow into large and efficiently coordinating groups. A necessary, but not sufficient condition, is 

that the exogenously defined new entrants are exposed to the groups’ history of the minimum 

contribution levels played in all previous periods. Salmon and Weber (2017) further explore 

mechanisms allowing small groups to efficiently coordinate in order to grow by incorporating 

members from low coordination groups. A quota system restricting the number of entrants and a 

quiz testing the understanding of the game perform roughly equally well to obtain and maintain 

efficient coordination. In addition, FIS compare decisions by individual and exogenously defined 

teams, showing that teams are persistently and remarkably better at coordinating on efficient 

outcomes than individuals. All these results illustrate the potential effect that teams can have on 

alleviating coordination problems and call for further research on the endogenous implementation 

of teams in coordination problems.  

Riedl et al (2016) allows for endogenous team formation through ostracism of agents, which 

cease to form part of the neighborhood. This allows agents to overcome the coordination problem 

by excluding other participants and leads to full efficiency. In a related study, Croson et al (2015) 

report small effects of exclusion of group members when it only affects the payoffs of the excluded 

agent, while this results in high efforts when exclusion entails the redistribution of foregone 

payoffs from the excluded agents among the rest of the group members. These two studies 

highlight the power of exclusion in enhancing efficiency. However, one may expect that the social 

costs of ostracism may be prohibitively high in many groups and societies, e.g., leading to a high 

employee turn-over rate in firms or the break-down of family businesses in which social ties are 

traditionally strong.  

Our main research interest is to address whether milder forms of team formation can make a 

difference to the coordination problem. In the teams we consider, members can set common effort 

levels but they cannot isolate or exclude others. Our central research question is thus whether 

endogenous teams can alleviate the coordination problem in weakest-link games, without further 

requiring of ostracism. The following comment made by VHBB in their seminal paper would 
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suggest an affirmative answer (p. 235): “If the players could explicitly coordinate their actions, 

the-real or imagined planner's decision problem would be trivial. […] each player should choose 

the maximum feasible action, �̂. Moreover, a negotiated "pregame" agreement to choose �̂ would 

be self-enforcing.” We present the first experimental results testing this statement. In short, our 

results show that team formation is capable of (i) stopping the chain of downward adjustment 

towards risk-dominant equilibria, (ii) increase coordination levels in final rounds, although 

provision levels do not reach the Pareto-optimal values, as well as (iii) increase coordination levels 

compared to situations where team formation is not possible. Thus, we show that team formation 

can alleviate coordination failure, but also that it does not solve the coordination problem 

completely.  

During our discussion below, we stress that the concept of Nash equilibrium yields multiple 

equilibria and that the refinement of Pareto-dominance is also not useful as it predicts the same 

outcome in all treatments with and without team formation, including riskier environments. In 

addition, Pareto-dominance predicts the best outcome in all cases, which is at odds with previous 

experimental results as well as with our experimental results. In order to rationalize our 

experimental results, we develop2 Quantal Response Equilibrium (QRE) and Agent Quantal 

Response Equilibrium (AQRE) analyses for the VHBB and FIS weakest link games without and 

with team formation (for a general discussion, see McKelvey and Palfrey 1995, McKelvey and 

Palfrey 1998 or Goeree et al. 2016). These concepts can be used as refinement criteria and predict 

different outcomes with and without team formation, which we can test with our data. For small 

deviations from an assumption of perfect rationality, the equilibrium is the worst outcome without 

team formation and the Pareto superior outcome with team formation. For agents with bounded 

rationality, predictions support that team formation increases provision levels, but does not solve 

the coordination problem, as provision falls short of the Pareto-optimal levels. Our experimental 

results are consistent with the latter.  

The rest of the paper is organized as follows: Section 2 describes the two weakest-link games 

considered, with and without team formation, and the associated payoff tables used in our 

experiments. Section 3 outlines the details of our experiments and section 4 presents and discusses 

                                                           
2  Although Goeree and Holt (2005) use the QRE analysis developed in Anderson et al. (2001) to study 

experimental data from a weakest-link game with a continuous action space and a maximum of 3 

players, to our knowledge, no previous paper has used the QRE to analyze a discrete weakest-link 

game, or the AQRE to analyze a multi-stage weakest-link game. 
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our results. Section 5 offers a theoretical analysis of the weakest link game, with and without team 

formation, using the QRE and AQRE concepts, and presents our estimations based on these 

concepts. Section 6 concludes. 

2. THE COORDINATION GAMES 

We consider separately decision settings in which individuals take individual decisions – no teams 

– and settings in which individuals can form teams, focusing in this section on Nash and Subgame 

Perfect Equilibria in pure strategies. An extension to a particular form of mixed strategies is 

introduced later (QRE and AQRE). 

2.1. No Team Formation 

We follow the mainstream of the experimental literature and consider the weakest-link game based 

on a simple linear payoff function of individual i :  

 V min

i i i ie ,e be ce K     with min

1 2 ne min e , e , ..., e ,          (1) 

where n  is the number of players; K is a constant scale parameter; b is a benefit parameter and c 

a cost parameter, with b>0 and c>0; ie  is the contribution level of individual i , and ie  is the 

vector of contribution levels of all other players except i. For positive Nash equilibrium provision 

levels, we need to assume b c . Following VHBB, we assume a discrete action space with 7 

provision levels, ie {1,2,3,4,5,6,7 }  and let the number of players be n 8 . Moreover, as 

VHBB, we assume b 20 , c 10 and K 60 . This results in the canonical payoff matrix 

introduced by VHBB presented in Table 1. In their terminology, which we henceforth use, 

choosing a contribution level means choosing a number. 

In Table 1, a player can choose any number between 1 and 7 as listed in the first column. The 

payoff, which this player obtains for a given number, depends on the smallest number chosen 

among all players, i.e., the minimum number. For instance, if a player chooses the highest number 

7, she will earn 130 if all players choose 7. However, if the lowest number chosen by others is 6, 

she will earn only 110. Other combinations have a similar interpretation.  
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         Table 1: VHBB Payoffs  

 

  Smallest number chosen by any participant in 

your group (including yourself) 

  7    6 5 4 3 2 1 
N

u
m

b
er

 y
o

u
 c

h
o

o
se

 7 130 110 90 70 50 30 10 

6  120 100 80 60 40 20 

5   110 90 70 50 30 

4    100 80 60 40 

3     90 70 50 

2      80 60 

1       70 

Source: Van Huick et al (1990), Payoff Table A, p. 232, all entries multiplied by 100.  

 

All Nash equilibria lie on the diagonal, and all players choosing 7 is the Pareto-dominant Nash 

equilibrium in this game. In a given row, all entries to the right of the diagonal entry imply a lower 

payoff to player i, as other players choose a lower number than player i. The larger the difference 

between the own number ie and the minimum number of all others 
min
ie , the larger will be the loss 

compared to 
min

i ie e . Only for ie 1 , 
min
i ie e   is not possible and hence player i is sure to receive 

a payoff of 70. Moreover, the minimum payoff over all 
min
i ie e   decreases with the minimum 

number chosen by player i, ie . The minimum is 70 for ie 1  and it decreases to 10 for ie 7 . 

Furthermore, in a given column, any number ie , which does not match 
min
ie , also implies a loss. 

Altogether, this proves that ie =
min
ie  is a best reply to 

min
ie , i.e., 

* min
i i ie e (e )  and hence by 

symmetry that in any Nash equilibrium 
* *
i je e  for all i, j N , i j  must hold. 

In addition to the classical VHBB payoffs, we investigate the weakest-link game introduced by 

FIS, which is displayed in Table 2. The payoff for all 
min
i ie e   is zero and hence much lower than 

in Table 1. That is, the payoff function is a piecewise function given by 

 F min

i i i ie ,e be ce K      if min

ie e  and  F

i i i 0e ,e    otherwise.        (2)  

Thus, compared to Table 1, coordination failure entails a larger loss in Table 2. For this reason, 

one could also view Table 2 as a “riskier weakest-link game” than Table 1. Except for this 

difference, the parameter values as well the action space are the same as in Table 1. The predictions 
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for Table 2 are the same as in Table 1: there are 7 Nash equilibria along the diagonal and all players 

choosing number 7 is the Pareto-dominant Nash equilibrium. 

 

Table 2: FIS Payoffs 

  Smallest number chosen by any participant in 

your group (including yourself) 

  7    6 5 4 3 2 1 

N
u
m

b
er

 y
o
u
 c

h
o

o
se

 7 130 0 0 0 0 0 0 

6  120 0 0 0 0 0 

5   110 0 0 0 0 

4    100 0 0 0 

3     90 0 0 

2      80 0 

1       70 

Source: Feri et al (2010), Table 1, Panel B, p. 1895.  

 

In both tables, applying the maximin criterion of choosing the strategy that maximizes the 

minimum payoff would induce players to choose number 1, as it guarantees the largest payoff in 

the worst possible case. However, this yields the least efficient equilibrium. FIS point out that 

Table 2 keeps the property of Pareto-ranked equilibria but reinforces the attraction of the maximin 

criterion as a selection device, as any number greater than 1 can lead to a payoff of zero. Their 

experimental results, and our experimental results and our theoretical analysis in section 5.1 

confirm their intuition. Thus, the FIS-payoffs provide a stronger test of the relative importance of 

payoff dominance versus taking a secure action.  

2.2 Endogenous Teams 

We consider a simple model of endogenous team formation in a two-stage game.3 In stage 1, all 

individuals in a population decide whether to join a team S , S N . In stage 2, all players choose 

their provision levels, i.e., their number, simultaneously. Within the team, we consider the 

following procedure. All s team members in S  ( s n ) make simultaneously a proposal for a 

number, which, if adopted, will be implemented for the entire team in stage 2. Among all s 

proposals P
ie , the minimum is adopted for the team, P

S 1e min{ e , ..., P
se } . All outsiders j S  

                                                           
3  For an overview of team formation games, commonly called coalition formation games, see for 

instance Bloch (1997) and Yi (2003). For a theoretical discussion of coalition formation in the 

weakest-link game, see Caparrós and Finus (2020).  
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freely choose their individual number je . The outcome of stage 2 is min S je { e , e } j S   . If S  

is empty or contains only one member, i.e., no team has formed in stage 1, all players choose their 

provision levels like in the game without team formation. 

Choosing the minimum of the proposals for team members entails unanimity voting.4 It is easy 

to show that for this voting rule, revealing true preferences is a dominant strategy (Moulin 1991). 

We chose this assumption because we expect that this assumption makes it attractive to join the 

team, which is the focus of our analysis. Nevertheless, it is clear that as long as the grand team 

does not form, and hence there are some outsiders left when entering stage 2, the team cannot 

control the provision level by outsiders. They must fear that any provision level Se  above 1 may 

not be matched by outsiders. However, as long as s 2 , the risk for the team of any outsider j S

choosing j se e  is lower, as the team acts de facto as one player, and thus there are less players. 

By symmetry, also the risk for every outsider j that any other player chooses a lower provision 

level j je e   is lower than without team formation.  

Solving the game via backward induction, we start analyzing stage 2. For a grand team, where 

all group members decide to play in a team, one could assume that they will choose number 7, 

which maximizes payoffs. As there is no outsider left, and given unanimity voting, there is no risk 

in proposing 7. However, for any team size which is smaller than the grand team, all numbers 

between 1 and 7 are Nash Equilibria in the second stage. This multiplicity of second stage 

equilibria implies that theoretical predictions for stage 1 lack predictive power. But even if one 

imposes additional selection criteria for stage 2, like Pareto-dominance, predictions about stage 1 

are not sharp, as teams of any size implementing 7 are subgame-perfect equilibria.  

3. EXPERIMENTAL DESIGN 

Subjects participated in one of four alternative treatments in a 2x2 between-subjects design varying 

the possibility to form teams as well as the payoff table for the coordination game (see Table 3). 

                                                           
4  Our team formation game has been designed with a high degree of consensus. Membership and the 

choice of the team number are taken by unanimity. In terms of membership, this resembles features 

of the exclusive membership  -Game of Hart and Kurz (1983) or the sequential move unanimity 

game by Bloch (1995), as discussed in Finus and Rundshagen (2008). In terms of the choice of the 

team number, this resembles the smallest common denominator proposal in bargaining games. Moulin 

(1994) has shown that this “conservative mechanism” is strategy-proof and hence leads to unbiased 

proposals. 
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For the VHBB payoffs (Table 1) this gives rise to the Baseline and Team treatment and for FIS 

payoffs (Table 2) this gives rise to the Risk and Risk-Team treatment. The experiment comprised 

20 rounds, which are divided into two parts (Part 1: rounds 1-10 and Part 2: rounds 11-20). Subjects 

learned the details of Part 1 at the beginning, and after the completion of Part 1 were introduced to 

Part 2. In treatments Baseline and Risk, all subjects played the coordination game with payoffs in 

Tables 1 and 2, respectively, for 20 rounds.5 In contrast, in treatments Team and Risk-Team 

subjects started by playing 10 rounds without team formation, followed by 10 additional rounds 

where subjects had the possibility to form teams. Including Part 1 without the possibility to form 

teams was important because we are interested in how institutional changes affect behavior in a 

given cohort, given that there is a history where subjects have experienced the coordination 

problem before having the option to form teams. In addition, Part 1 provides an initial measure of 

coordination failure in the absence of team formation.  

 

Table 3: Summary of Experimental Sessions 

Treatment Payoff Function 
Team, Part 1 

(Round 1-10) 

Team Part 2 

(Round 11-20) 

Number of 

subjects 

Number 

of groups 

Baseline Van Huick et al. (1990) No No 64 8 

Team Van Huick et al. (1990) No Yes 72 9 

Risk Feri et al. (2010) No No 72 9 

Risk-Team Feri et al. (2010) No Yes 64 8 

    272 17 

 

Instructions were read aloud in order to ensure that details of the experiment were public 

information. The language used in the experiment was neutral. Subjects were randomly and 

anonymously assigned to groups of 8 people. Groups remained fixed for the duration of the 

experiment. Before making decisions in Part 1 and Part 2 in all treatments, subjects answered 

quizzes to check their understanding of the game. See Supplementary Material II for instructions. 

                                                           
5  For consistency with treatments with team formation, the instructions for treatments without team 

formation also included a Part 1 and a Part 2. Subjects were told at the end of Part 1 that the game 

would continue for 10 more rounds in Part 2. 
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In each round in which subjects were not allowed to form teams, subjects were confronted with 

the sole decision to simultaneously choose a number out of 1, 2, 3, 4, 5, 6, or 7. At the end of each 

round, in each group, subjects saw an information screen summarizing the number chosen by the 

subject, the minimum number chosen in her group, her earnings for that given round, and her 

cumulative earnings. 

In rounds in which subjects were allowed to form teams, decisions were structured according 

to 4 phases to ease the understanding of the game. In phase 1, all members of a group decided if 

they wanted to play as an individual or in a team. If a subject decided to play as an individual, her 

next decision was in phase 4. If she decided to play in a team, and if at least another group member 

decided to play in a team, all team members moved to phase 2. At the beginning of phase 2, all 

team members were informed about how many subjects decided to join the team and were asked 

to confirm their membership. If at least one team member did not confirm her membership, the 

team dissolved and everyone moved to phase 4. If all team members confirmed membership, team 

members moved to phase 3. In phase 3, each team member suggested a number between 1 and 7 

to be implemented by the team in phase 4. The smallest of these numbers was automatically 

implemented by the team in phase 4. Notice that this implies that, irrespective of whether a subject 

joined the team, she could not be forced to play a number above her own choice.6 Lastly, in phase 

4, if a team had formed, the team number selected in phase 3 was automatically and uniformly 

implemented by each team member. Any individual who was not a member of the team chose 

independently and freely a number between 1 and 7, without any knowledge about the number 

chosen by the team. At the end of each round (including 4 phases), all subjects saw an information 

screen summarizing the own number played, the minimum number chosen in her group (minimum 

of team or no team members), her earnings for this round, her cumulative earnings. In addition, all 

subjects saw whether a team had formed and, if a team formed, the size of the team and the number 

chosen by the team. 

All sessions were conducted at the University of Innsbruck EconLab. The experiments used z-

Tree (Fischbacher, 2007) for programming and ORSEE (Greiner, 2015) for subject recruitment. 

Sessions lasted for about an hour and participants earned on average 13.28 Euros. 

 

                                                           
6  See footnote 4.  
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4. EXPERIMENTAL RESULTS 

We first analyze whether teams are initiated and confirmed. We then analyze whether team 

formation increases provision levels, by comparing average numbers and minimum numbers with 

and without team formation in Part 2. Finally, we analyze whether team formation has an impact 

on the evolution of provision levels over time by comparing the trend of average and minimum 

numbers. 

4.1 Team Formation 

This section analyzes the sizes of the teams initiated and eventually confirmed. We consider Part 

2 of the experiment (rounds 11-20) for the two treatments where teams can form. We first focus 

on those instances for which at least two subjects proposed to form a team in phase 1 of a round 

(initiated teams) and analyze whether those subjects who proposed a team unanimously confirm 

their membership in phase 2 of that round (confirmed teams). Table 4 provides an overview of 

results. In treatment Team, 90 teams were initiated, which implies that teams were initiated in 

every round and in every group (100 percent). Of those 90 initiated teams 80 teams were 

confirmed, which gives a confirmation rate of 88.89 percent. In treatment Risk-Team, in 78 out of 

80 possibilities a team was initiated (97.5 percent) of which 48 were confirmed, which corresponds 

to a confirmation rate of 61.54 percent. While the rate of teams initiated is not significantly 

different between treatments (Mann-Whitney U Test, p=0.1325), the confirmation rate is 

statistically higher in Team than in Risk-Team (Mann-Whitney U Test, p=0.0000).  

In both Team and Risk-Team, the vast majority of teams confirmed are grand teams that contain 

all eight subjects in a group. The absolute number of grand teams is very similar in the two 

treatments, 41 grand teams in Teams and 45 in Risk-Teams. However, these absolute numbers 

represent different frequencies over the total number of teams initiated. The grand team constitutes 

51.25 percent in Team of the total teams confirmed (i.e., 41 out of 80) and 93.75 percent in Risk-

Team (i.e., 45 out of 48). This is because in Team the size of teams confirmed is diverse while in 

Risk-Team there are only three instances of confirmed teams smaller than the grand team. For the 

grand teams, confirmation rates are similar in Team, 93.18, and Risk-Team, 97.83 percent. 

However, they differ for teams that contain less than eight members. In Team the confirmation rate 

of  initiated  teams  smaller  than  the  grand  team  is  above  65  percent  in  all  cases,  while  the  
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Table 4a: Initiated and Confirmed Teams across Treatment “Team” 

 Initiated 

Teams 

Confirmed 

Teams 

Confirmation 

Rate (%) 

Percentage of Confirmed 

Teams by Size 

Total 90 80 88.89 100 

Two Members 1 1 100 1.25 

Three Members 8 8 100 10 

Four Members  3 2 66.67 2.5 

Five Members 5 4 80 5 

Six Members 17 14 82.35 17.5 

Seven Members 12 10 83.33 12.5 

Eight Members 44 41 93.18 51.25 

 

Table 4b: Initiated and Confirmed Teams across Treatment “Risk-Team” 

 Initiated 

Teams 

Confirmed 

Teams 

Confirmation 

Rate (%) 

Percentage of Confirmed 

Teams by Size 

Total 78 48 61.54 100 

Two Members 3 0 0 0 

Three Members 2 0 0 0 

Four Members  2 0 0 0 

Five Members 8 1 12.5 2.08 

Six Members 6 0 0 0 

Seven Members 11 2 18.18 4.17 

Eight Members 46 45 97.83 93.75 
 

Note: The table shows absolute and relative numbers of initiated and confirmed teams broken down by team size. In 

treatment Team there are 9 groups observed in 10 rounds in Part 2 such that there is a maximum of 90 instances where 

teams can be initiated and confirmed. In treatment Risk-Team there are 8 groups observed in 10 periods making a 

maximum of 80 instances where teams can be initiated and confirmed. The confirmation rate for each team size is the 

percentage of successfully confirmed teams relative to the number of initiated teams within each class. The percentage 

of confirmed teams by size measures the number of confirmed teams for a given size relative to the total number of 

confirmed teams.    

 

corresponding confirmation rate in Risk-Team is below 20 percent. Thus, participants in Team are 

more likely to accept the risk of not all group members joining the team, whereas participants in 

Risk-Team prefer to dissolve the group if they realize that not all other group members are playing 

in the team. Indeed, the difference between the average size of confirmed teams in Team (6.7 

members (SD=1.72)) and Risk-Team (7.9 (SD=0.47)) is statistically significant (Mann-Whitney U 

Test, p=0.0000). Our observations are summarized in Result 1 below. 
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Result 1: Individuals use the opportunity to form teams: they initiate and confirm teams in Team 

and Risk-Team. The rate of teams initiated is similar in both treatments. Out of those, the 

confirmation rate is smaller in riskier environments (FIS payoffs), where predominantly only the 

grand team is confirmed. 

Result 1 is further substantiated by an analysis of the evolution of team formation over rounds. 

Figure A1 in Supplementary Material I shows the relative frequencies (in percent) of different 

sizes of teams, in addition to the numbers chosen by the teams and the resulting minimum numbers 

in treatment Team (Panel A) and Risk-Team (Panel B), broken down by rounds. The distribution 

of different team sizes in both treatments Team and Risk-Team are unimodal with the majority of 

the distribution mass coming from grand teams in all rounds and with a stronger modality in Risk-

Team. 

A Spearman’s rank order correlation shows a significant negative correlation between the 

number of confirmed teams and rounds in treatment Team (ρ=-0.69, p=0.0283) and no significant 

correlation in Risk-Team (ρ=0.36, p=0.3059). The negative correlation in Team is even stronger 

for the number of grand teams confirmed over rounds (Spearman rank order correlation: ρ=-0.76, 

p=0.0102) whereas it is significantly positive in Risk-Team (Spearman rank order correlation: 

ρ=0.87, p=0.0009). The number of confirmed teams with fewer than eight members over rounds 

is constant in Team (Spearman rank order correlation: ρ=-0.08, p=0.8307) and negative in Risk-

Team (Spearman rank order correlation: ρ=-0.68, p=0.0294). Thus, the decreasing number of 

confirmed teams over time in Team originates from a downward trend in the number of confirmed 

grand teams. In Risk-Team, the constant relationship between the number of confirmed teams and 

rounds masks two opposing trends: an increasing number of confirmed grand teams over rounds 

and a decreasing number of confirmed teams with fewer than eight members.  

4.2 Provision Levels 

In order to address the impact of team formation, in terms of average contributions and in terms 

of equilibrium provision levels, we investigate differences in two main output variables between 

treatments with team formation, namely average numbers and minimum numbers.7 All analyses 

are conducted at the group level, where each group of 8 subjects is treated as an independent unit 

                                                           
7  For simplicity, we use “minimum numbers” instead of “average minimum numbers” when we report 

on averages over all groups.  
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of observation. The minimum number in a round measures the group output level and influences 

the payoff that subjects receive in this particular round. The average number in a round is a measure 

for the numbers chosen by all subjects in this round. By construction, the minimum number is 

weakly smaller than the average group number, and for groups with perfect coordination the two 

numbers coincide. The average and minimum numbers across all groups in each round are 

presented in Figure 1- Panel A and Figure 1 – Panel B, respectively.8  

As shown in Table 5, average numbers and minimum numbers in Part 2 are significantly higher 

in treatment Team than in Baseline. Although both average numbers and minimum numbers are 

higher in Risk-Team than in Risk, these differences are not significant.9 The comparison between 

treatments provides evidence on the positive impact of team formation on provision levels for the 

VHBB payoff. However, even with team formation, minimum numbers fall short of the Pareto-

optimal level 7. It is also interesting to observe that grand teams perform equally well in both 

treatments, exhibiting the minimum number of 5.63 (SD 1.59) in Team and 5.51 (SD 2.53) in Risk-

Team, (Mann-Whitney U test p=0.0656). This is not the case for teams of smaller size.   

The following result summarizes the discussion above:  

Result 2: Average numbers and minimum numbers are significantly higher with the VHBB payoff 

when team formation is possible. With FIS payoffs average numbers and minimum numbers are 

higher when team formation is possible but not significant. Overall, provision levels do not reach 

the Pareto-optimal values.    

That is, team formation alleviates the coordination problem but does not solve it.  

                                                           
8  The average and minimum numbers in all twenty rounds separated by groups and by treatments are 

shown in Figures A2-A5 (average numbers) and A6-A9 (minimum numbers) in Supplementary 

Material I. A test of significance of differences between Parts 1 and 2 for the different treatments, 

based on a Wilcoxon Signed-Rank Test, can be found in Table A.1 in Supplementary Material I. 
9    The lack of significant differences is partly driven by an outlier group in treatment Risk that is 

coordinating on the payoff-dominant equilibrium in all 20 rounds. Excluding this group, minimum 

numbers in part 2 in treatment Risk-Team are significantly higher than in Risk (p= 0.027), while there 

is no significant difference in average numbers (p= 0.875).  
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Figure 1- Panel A: Average Numbers across Rounds

 

Figure 1 – Panel B: Minimum Numbers across Rounds 

 

Note: The straight vertical line at round 10 separates rounds 1-10 of Part 1 from rounds 11-20 of Part 2. 
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Table 5: Comparison between Treatments of Average Numbers and Minimum Numbers 

in Part 2 

 Baseline Team Mann-

Whitney U 

Test(3) 

Risk Risk-

Team 

Mann-

Whitney 

U Test 

Average(1) 

Number in 

Part 2 
 

 

2.145 

 

4.832 

 

** 

(0.0209) 

 

2.056 

 

3.688 

 

 

(0.8471) 

Minimum(2) 

Number in 

Part 2 

 

1.475 

 

4.433 

 

** 

(0.0113) 

 

1.667 

 

3.538 

 

 

(0.1348) 
 

Notes: (1) Average Number: arithmetic mean of average numbers over all rounds in part 2 over all groups in the same 

treatment. (2) Minimum number: arithmetic mean of minimum numbers over all rounds in part 2 over all groups in 

the same treatment. (3) Significance of differences between parts, based on a Mann-Whitney U Test. Significance at 

the 1 percent (***), 5 percent (**) and 10 percent (*) level. P-values are given in parentheses 

4.3 Dynamics 

This section analyzes the effect of team formation on the trends of output variables. We explore 

the dynamics by analyzing the trend of average numbers and minimum numbers throughout rounds 

within Part 1 and Part 2, using the Jonckheere-Terpstra test10 for ordered alternatives. The 

impression of a decreasing trend of average numbers throughout rounds 1-10 as observed in Figure 

1 - Panel A is supported by the result of a Jonckheere-Terpstra test. There is a statistically 

significant trend of lower average numbers in Part 1 in the game with no team formation in all 

treatments (p=0.0000 in Baseline; p=0.0000 in Team; p=0.0000 in Risk and p=0.0000 in Risk-

Team). This is in line with the downward sloping trend commonly observed in coordination 

experiments without team formation (Van Huick et al 1990; Feri et al 2010 and Riedl et al. 2016). 

Moreover, the trend of average numbers across rounds 11-20 in Part 2 is different between 

treatments with and without team formation. While a negative trend is observed in Part 2 in the 

treatments without team formation (p=0.0000 in Baseline and p=0.0000 in Risk), there is no 

                                                           
10  The Jonckheere-Terpstra test for a decreasing trend tests the null hypothesis that average numbers are 

equal in all rounds against the alternative hypothesis that average numbers are equal or decreasing 

over rounds. In particular, for Part 1, if µi denotes the average number in round i then H0: µ1=µ2= 

…=µ10 and HA: µ1≥µ2≥…≥µ10 with at least one strict inequality (Lunneborg 2005).  Alternatively, the 

test can also be specified for an ascending trend.  
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statistically significant trend in the treatments with team formation (p=0.6797 in Team and 

p=0.5000 in Risk-Team). Thus, team formation has a stabilizing effect on average numbers.11 

Similar comments apply to the development of minimum numbers. In Part 1, a significant 

descending trend of minimum numbers throughout rounds 1-10 is observed in treatments Baseline, 

Team and Risk-Team. A Jonckheere-Terpstra test for a descending ordered alternative hypothesis 

yields p=0.0003 in Baseline, p=0.0311 in Team, p=0.1956 in Risk and p=0.0066 in Risk-Team. 

Note that the initial minimum number in round 1 in treatment Risk (1.7) is already close to the 

lowest possible number which makes the possibility for a descending trend across rounds in Part 

1 unlikely.12 In Part 2, Figure 1–Panel B shows that treatments with and without team formation 

exhibit different patterns of minimum numbers. Minimum numbers are decreasing throughout 

rounds in treatment Baseline, show no trend in treatment Team and Risk and increase across rounds 

in treatment Risk-Team. In treatment Risk minimum numbers are again close to the lowest possible 

number in all rounds of Part 2 such that a negative trend is unlikely to emerge. A Jonckheere-

Terpstra test for a descending ordered alternative hypothesis for minimum numbers throughout all 

rounds in Part 2 yields p=0.0053 in Baseline, p=0.5258 in Team, p=0.5000 in Risk and p=0.9313 

in Risk-Team. In Risk-Team the alternative hypothesis of an ascending order of minimum numbers 

is not rejected (p=0.0687). Result 3 summarizes our observations. 

Result 3: Team formation stops the downward trend of average and minimum numbers over 

rounds for VHBB-payoffs. In risky environments with FIS-payoffs, team formation increases 

average and minimum numbers.  

Comparing the average and minimum numbers in the final rounds of Part 1 and Part 2 yields 

equivalent results. In Team, average and minimum numbers are not significantly different in 

                                                           
11  A Friedman test was conducted as a robustness check for the results of the Jonckheere-Terpstra trend 

test, providing the same results. There is a significant difference among average numbers in Part 1 in 

all treatments (X²=61.8136, p=0.0000 in Baseline; X²=70.5818, p=0.0000 in Team; X²=41.2303, 

p=0.0000 in Risk and X²=43.5818, p=0.0000 in Risk-Team). Moreover, there is a significant difference 

among average numbers in Part 2 in treatments Baseline and Risk (X²=43.0977, p=0.0000 in Baseline; 

X²=26.6061, p=0.0016 in Risk) while the null hypothesis of equal average numbers across rounds in 

Part 2 is not rejected in treatments Team and Risk-Team (X²=13.7758, p=0.1305 in Team and 

X²=4.6364, p=0.8648 in Risk-Team). 
12  There was one group in treatment Risk which coordinated on the highest possible number in all rounds 

1-20 (See Figure A3, Group Risk_5 in the Supplementary Material I). Excluding this outlier group 

from the analysis does not change qualitative results on trend behavior but shifts average numbers and 

minimum numbers downwards.  
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rounds 10 and 20 (p=0.4156 for average numbers and p=0.3221 for minimum numbers), stopping 

the downward trend observed in Baseline, where average numbers are significantly lower in round 

20 compared to round 10 (p=0.0350). In Risk-Team, both average numbers as well as minimum 

numbers are significantly higher in round 20 relative to round 10 (p=0.0474), whereas in Risk 

there are no significant differences in average (p=0.2587) or minimum numbers between rounds 

10 and 20.   

5. (AGENT) QUANTAL RESPONSE EQUILIBRIUM  

From the results in Section 4 it is clear that the refinement concept of Pareto-dominance of Nash 

equilibria is not a good predictor of our experimental result. Therefore, in this section we propose 

Quantal Response Equilibrium (QRE) and Agent Quantal Response Equilibrium (AQRE) 

analyses. In section 5.1, we introduce these concepts and derive theoretical predictions. In section 

5.2, we test these theoretical predictions, provide estimations based on our experimental data and 

develop additional estimation-based predictions.13  

5.1 Theoretical Predictions 

The QRE is a Nash equilibrium in mixed strategies based on a probabilistic choice function to 

model decision making with payoff sensitive errors (McKelvey and Palfrey 1995), and the AQRE 

is an extension of the QRE to games with more than one stage (see McKelvey and Palfrey 1998). 

The basic idea on which the QRE and the AQRE are built is that decisions are stochastic and all 

actions have a non-zero probability of being selected (Goeree et al. 2016). However, the 

probability of choosing non-optimal actions is inversely related to the loss induced. In other words, 

players are better-response agents, not best response agents. The sensitivity of players to errors is 

measured by an “error parameter”,  . Larger values of  imply larger sensitivity to errors and 

make non-optimal choices less likely. For 0  , choices are purely random and for   

choices are (almost) perfectly rational, in the sense that options with larger expected payoffs are 

selected with probability close to one. 

                                                           
13  We distinguish between theoretical predictions, valid for any value of the parameter λ defined below, 

and estimation-based predictions, which are only valid for the estimated parameters. 
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As most of the literature, we use a logit equilibrium specification for our game. Without team 

formation, and with reference to our specific setting, the equilibrium is the solution to the following 

system of equations: 

ij

ik

V ( )

ij 7 V ( )

i 1

e
( )

e

 

 
 






 for all i 1,2, ..., 8 , j 1,2, ...,7           (3) 

where ij is the probability that agent i selects the provision level (i.e., number) j,   is the set of 

all mixed strategies over all players (i.e., probabilities overall actions and all players) and i jV  is 

the expected payoff of agent i when she selects number j. The logit equilibrium correspondence 

includes the solutions for all possible values of   and is defined as  

 
ij

ik

V ( )
*

i j 7 V ( )

i 1

e
: : ( ) i, j

e

 

 
    



  
   
  

 .          (4) 

 Note that the expected payoff i jV  depends on  . Choosing 1 gives a certain value of 70, but 

the payoffs associated with choosing 2 depends on the probability that any other player chooses 1, 

as the player only defines the minimum if no other player chooses 1. The same logic is applied to 

calculate the remaining payoffs and associated probabilities (see Supplementary Material III.1 for 

details).  

We find the logit correspondence numerically for both payoff functions (VVHS and FIS), 

focusing on symmetric equilibria (Turocy, 2010). As in all games, for 0   there is a unique logit 

equilibrium close to the “centroid” of the game, where all strategies are adopted with equal 

probability. This entails that all numbers between 1 and 7 are played with equal probability. One 

can then trace out a principal branch of the logit correspondence for progressively higher values 

of   until  . The limit point of the principal branch as   approaches infinity is called the 

logit solution of the game. When there is a unique branch that connects the centroid to exactly one 

Nash equilibrium, as in most simple games, and in particular in the weakest-link game, this can be 

seen as a strong refinement (McKelvey and Palfrey 1995; Goeree et al. 2016).  

For the VHBB and the FIS payoffs, the logit equilibrium when   implies that 1 is played 

with a probability close to one. This result is closely related to risk dominance and to the potential 

function proposed by Monderer and Shapley (1996), as discussed in detail in Goeree and Holt 

(2005). Furthermore, for relatively small values of  , above 0.4519 for the VVHS payoffs and 
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above 0.2479 for the FIS payoffs, the logit equilibrium already yields a probability larger than 

0.9999 of playing 1. That is, convergence to the worst possible outcome occurs faster under the 

FIS- than VVHS-payoffs, confirming the intuition discussed in FIS that the payoffs in Table 2 

favor the “secure” action of choosing 1.  

For team formation with two stages, we apply the AQRE (McKelvey and Palfrey 1998). A 

behavioral strategy is an AQRE if each player i is choosing her best response at every information 

set, taking ij  and the error structure associated with the logit equilibrium as given. Furthermore, 

any limit point of a sequence of logit AQRE when   corresponds to a sequential equilibrium 

of the game (Goeree et al. 2016). Basically, the solution is obtained via backward induction. More 

precisely, to calculate the AQRE one needs to calculate the probabilities of all actions available at 

each information set, conditional on arriving at a particular information set and based on 

continuation values. The logit AQRE correspondence *  is then defined as the mapping from 

[0,1)  to the set of logit AQRE behavioral strategies:  

ijk

ijk
k

j i

V ( )
*

ij V ( )

a A( h )

e
: : ( ) i, j,k

e

 

 
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

 
 

   
  

            (5) 

where k
iA( h ) is the finite set of actions ja  available to agent i at information set k

ih . As before, 

details on how the payoffs and associated probabilities are calculated can be found in 

Supplementary Material III.2. The main difference is that now, while calculating these 

probabilities, one needs to take into account that the number of independent players varies between 

1 if the grand team forms and 8 if no team forms. That is, the larger the team the smaller the number 

of outside players to be considered when calculating the expected payoff associated with selecting 

one particular number between 1 and 7. Essentially, from the perspective of the team as well as 

from the perspective of all single players, team formation implies that the probability of other 

players choosing a provision level below the own provision level is reduced, and hence the risk of 

receiving a low payoff is reduced. In sum, risk decreases with the size of the team and is zero if 

the grand team forms. 

At the information set of the first stage, there are only two actions available to each player (join 

the team or remain a singleton) and the payoffs associated with each action depends on the 
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expected payoffs in the second stage, which in turn depends on the size of the team emerging from 

the first stage (see Supplementary Material III.2 for details).  

The analysis based on the (A)QRE allows us to write the following Testable Predictions: 

Testable Predictions Consider the weakest-link games introduced in section 2, the VHBB 

payoff function (1) and the FIS payoff function (2), with b=20, c=10, K=60, n=8 and 

ei={1,..,7}. Correspondences (4) and (5) imply for the QRE and the AQRE the following: 

i) Without team formation, for any  , minimum numbers are below or equal to 1.37 and 

average numbers below or equal to 4. Both numbers converge to 1 for  . 

ii) With team formation, for any  , the probability of joining the team is larger or equal to 

0.50. When intermediate teams are formed, minimum numbers are below 7. Moreover, 

for  , the grand team and a minimum number of 7 are obtained with a probability 

that tends to 1. 

iii) Minimum numbers are larger with team formation than without for any 0  . 

    Proof: Supplementary Material III. 

These Testable Predictions are valid for any value of  . Hence, experimental data that differ 

significantly from these predictions would refute the (A)QRE models in our setting14. The next 

section will show that this is not the case. 

Our Testable Predictions also show that (almost) perfectly rational agents, i.e. when  , 

coordinate on the worst possible outcome if there is no team formation, while with team formation 

they form the grand team and coordinate on the best possible equilibrium provision. That is, 

(almost) perfect rationality is a curse for the basic coordination game, but it may be a blessing once 

team formation is possible. This is consistent with the intuition in the VHBB quote in the 

introduction. However, for agents with bounded rationality, there is no guarantee that team 

formation will solve the coordination problem as, depending on the value of  , the probability of 

joining a team can vary between 0.50 and 1.00. In addition, intermediate coalitions choose on 

                                                           
14  As shown by Haile et al (2008), introducing sufficient flexibility a structural QRE and AQRE model 

can rationalize almost any behavior. However, this is not the case for our logit QRE and AQRE and 

its Independence of Irrelevant Alternatives assumption. For an approach using a flexible 

(heterogeneous) QRE and AQRE, see Rogers et al. (2009).  
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average values below 7, and even the grand team can choose values between 4 and 7. Hence, our 

hypothesis is that team formation will alleviate the coordination problem but will not solve it 

completely in the light of imperfect rationality, which is in line with the treatment effects presented 

in Section 4. 

5.2 Estimation and Results 

As we are interested in equilibrium behavior, we focus on the behavior observed in the last five 

rounds of the game (rounds 16 to 20). For the case without team formation, the log-likelihood 

function to be estimated is 

n 7 *
ij iji 1 j 1

l og L( , f ) f log( ( ))  
 

                (6) 

where the observed empirical frequencies of strategy choices are denoted by f, and fij represents 

the number of observations of player i choosing j. The maximum-likelihood estimates are 

ˆ arg max log L( , f )  . For the case with team formation, the estimation strategy is basically 

the same (see Supplementary Material III.3 for details). As all players take decisions in both stages, 

we add the different components of the log-likelihood function. Standard errors are estimated in 

both cases using the bootstrapping method (Efron 1979; Train 2009).  

The first two columns of Table 6 show the results for the logit QRE models estimated for the 

two treatments without team formation. As can be seen, the estimation of the parameter ̂  is 

significant in all cases. The last two columns report the results for the logit AQRE model estimated 

for both treatments with team formation. The estimations of ̂  are again significant. 

 

Table 6:  Estimation results for the logit QRE and AQRE models for rounds 16-20 

 No team treatments (QRE) Team treatments (AQRE) 

 Baseline Risk Team Risk-Team 

̂  0.0870*** 

(0.0242) 

0.0527*** 

(0.0126) 

0.0324** 

(0.0129) 

0.0898** 

(0.0146) 

Log-L 369.6219 223.6916 894.7407 532.0091 

M 320 360 360 320 
 

Note: Standard errors are shown in brackets; ˆ :  estimated  ; M: number of observations. 

Significance at the 10% (*), 5% (**) and 1% (***) level.  
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For the second stage, Table 7 shows the average and minimum numbers observed in rounds 16 to 

20 as well as the estimation-based predictions obtained with the different models, which are 

obtained by using the estimated ̂ -values shown in Table 6.  

 

Table 7: Observed and estimation-based predicted average and minimum numbers for 

rounds 16 to 20  

 Observed Data (A)QRE predictions(1) 

 Average 

Number 

Minimum 

Number  

Average Number Minimum Number 

Baseline 

 

1.7063 1.3000 1.7069 

[1.3523-2.6241] 

1.0009 

[1.0000-1.0380] 

Risk 1.7167 1.6667 1.4565 

[1.0907-2.6029] 

1.0000 

1.0000-1.0025] 

Team 

 

4.8222 4.3556 3.1898 

[2.5897-3.8324] 

1.6026 

[1.4432-1.8401] 

Risk-Team 3.9906 3.9750 3.2260  

[1.1300-4.5879] 

3.2027 

[1.0433-4.5599] 
 

(1) Predictions using parameters estimated based only on data from the treatment. According to Table 6, we use: 

QRE with λ� =0.0870 for Baseline and with λ�=0.0527 for Risk; AQRE with λ�=0.0324 for Team and with 

λ�=0.0898 for Risk-Team. 95% confidence intervals are shown in square brackets. Average and minimum 

numbers for a given treatment are the arithmetic means over all groups and all five rounds. 
 

Without team formation, the experimental data is in line with our Testable Prediction (i). 

Observed average numbers are well below 4, and minimum numbers are below the benchmark of 

1.37 for the Baseline treatment and slightly above this number for the Risk treatment. Estimation-

based predictions, with ˆ 0.0870   for Baseline and ˆ 0.0527   for Risk, perform well for average 

numbers but are more pessimistic than the observed data regarding minimum numbers. 

Nevertheless, not surprisingly, the logit QRE predicts observed behavior far better than Pareto 

dominance, which would support provision levels of 7. 

The second half of Table 7 shows the observed and the estimation-based predicted averages 

and minimum numbers with the logit AQRE models for the two treatments with team formation. 

In line with our Testable Prediction (iii), the estimation-based predictions shown in Table 7, as 

well as the observed results, imply an increase in minimum numbers compared to the case without 

team formation. This is also in line with the treatment effects observed for team formation and 

highlighted in Result 2. However, for both treatments, the estimation-based predictions for the 
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AQRE are more pessimistic than the behavior observed (although within the confidence interval 

for the Risk-Team treatment).  

For the last five rounds, the observed share of implemented teams is 0.79 for the Team 

treatment, and 0.78 for the Risk-Team treatment. These shares are well above the minimum of 0.50 

shown in our Testable Prediction (ii), and thus do not refute the AQRE model. However, again, 

estimation-based predictions are more pessimistic than the observed data for the Team treatment, 

as the predicted share is 0.53, with confidence interval [0.51-0.55], for ˆ 0.0324  . For the Risk-

Team treatment the predicted share is 0.88, with confidence interval [0.51-0.99], for ˆ 0.0898  .   

We now highlight the main results discussed above: 

Result 4: Experimental results are consistent with the predictions valid for any λ detailed in 

our Testable Predictions. Estimation-based predictions (Table 7) are more pessimistic than 

the observed behavior for minimum numbers and in line for average numbers.  

From our Testable Prediction (ii) we know that if we assume (almost) perfect rationality, i.e., 

   , team formation was to solve the coordination problem, as all players would join the grand 

team and then select the highest number, 7. Not surprisingly, as subjects are far from perfectly 

rational in our experiment (estimated ̂  are clearly far below infinity; see Table 6), the prediction 

discussed at the end of section 5.1 is confirmed, namely that team formation contributes to alleviate 

the coordination problem, but cannot solve it as long as individuals make mistakes (i.e., are not 

perfectly rational).  

 

6. CONCLUSIONS 

This study provides a first experimental analysis of the potential of team formation in order to 

increase provision levels in weakest-link games in fixed groups. Teams facilitate subjects to 

voluntarily coordinate on their preferred contribution level, in a setting without the possibility of 

excluding neighbors. Our results show that even without exclusion possibilities, endogenous team 

formation within a group can alleviate the coordination problem, despite not achieving first-best 

outcomes. This is a remarkable result in terms of testing theory, which also has interesting policy 

implications.  



25 

 

From a policy perspective, this result suggests that in field settings where coordination failure 

is prevalent, team formation can be an alternative to harsh interventions entailing ostracism to 

group members or full exclusion. This conclusion is important as there are many situations in 

which exclusion is costly or simply impossible because it creates tensions among the members in 

a group (who may be involved also in other tasks than providing a public good for the group) or 

because of legal or physical restrictions. Milder interventions, in the form of providing the 

opportunity of forming teams, come at a cost of not reaching first-best outcomes, but this might 

be a reasonable price to pay in exchange for contained inter-group conflict. 

We confirm previous literature showing that the concept of Pareto-dominance of Nash 

equilibria is not a good predictor to explain experimental results in weakest-link coordination 

games. In fact, the problem of multiplicity of Nash equilibria was only exacerbated in our analysis 

with team formation. Quantal Response and Agent Quantal Response Equilibria, allowing for 

small deviations from perfectly rationality, provided predictions with opposite behavior with and 

without team formation: (Almost) perfect rationality is a curse for the basic coordination game 

while it is a blessing once team formation is possible.  When considering agents with bounded 

rationality, the models capture the observed behavior that team formation alleviates the 

coordination problem but does not solve it. 
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I. ADDITIONAL ANALYSES 

Figure A1: Distribution of Sizes of Implemented Teams over Rounds 

 
Note: The figure presents the distribution of different team sizes over rounds in treatments Team (Panel 

A) and Risk-Team (Panel B) together with the minimum number and the average number for each team 

size. The relative frequency of each team size in a round is calculated as the percentage of this team size 

relative to the total number of teams within this round. Relative frequencies sum up to 100 percent in 

each round. The minimum number for each team size is the arithmetic mean of minimum numbers over 

all groups with implemented teams of that size within the respective round. The average number for each 

team size is the arithmetic mean of team numbers over all groups with implemented teams of that size 

within the respective round. 
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Figure A2 - Development of Average Numbers separated by Groups in Baseline 

 

Figure A3 - Development of Average Numbers separated by Groups in Team 
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Figure A4 - Development of Average Numbers separated by Groups in Risk 

Figure A5 – Development of Average Numbers separated by Groups in Risk-Team
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Figure A6 - Development of Minimum Numbers separated by Groups in Baseline 

 

Figure A7 - Development of Minimum Numbers separated by Groups in Team 
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Figure A8 - Development of Minimum Numbers separated by Groups in Risk 

 

Figure A9 - Development of Minimum Numbers separated by Groups in Risk-Team 
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Table A.1:  Average Numbers and Minimum Numbers in Part 1 and Part 2 

Notes: (1) Average Number: arithmetic mean of average numbers overall all rounds in part 2 over all 

groups with same treatment. (2) Minimum number: arithmetic mean of minimum numbers over all 

rounds in part 2 over all groups with the same treatment. (3) Significance of differences between parts, 

based on a Wilcoxon Signed-Rank Test. Significance at the 1 percent (***), 5 percent (**) and 10 percent 

(*) level. P-values are given in parentheses. 

  

Treatment Average(1) 

Number in 

Part 1 

Wilcoxon 

Signed-

Rank  

Test
(3) 

Average 

Number 

in Part 2 

Minimum(2) 

Number in 

Part 1 

Wilcoxon 

Signed-

Rank 

Test 

Minimum 

Number in 

Part 2 

Baseline 3.322 **  

(0.0117) 

2.145 1.925 ** 

(0.0192) 

1.475 

Team 4.289  

(0.3743) 

4.832 2.911 * 

(0.0750) 

4.433 

Risk 2.011 **  

(0.0116) 

1.438 1.038  

(0.1582) 

1.000 

Risk-Team 1.931  

(0.2626) 

3.688 1.125  

(0.1780) 

3.538 
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II. EXPERIMENTAL INSTRUCTIONS 

The instructions were in German. Below, we present the English translation for Baseline and 

Team. The instructions for Risk and Risk-Team were equivalent to Parts 1 and 2 of Baseline 

and Team, with the exception that the payoff table was Table 2 instead of Table 1 (both in the 

manuscript). Moreover, the examples were adjusted accordingly. 

 

Introduction: General instructions  

WELCOME 

This is an experiment on decision making. You start the session today with 4 euros 

and you will have the chance to earn money based on your decisions in this 

experiment. It is extremely important that you put away all materials including 

external reading material and turn off your cell phones and any other electronic 

devices.  

If you have a question, please raise your hand and I will come by and answer your 

question. Talking is not permitted. Please read the instructions carefully, as your 

decisions and the decisions of others in the experiment will affect your final earnings. 

Structure: Today’s experiment comprises three parts, Part 1 to Part 3. The 

experiment will last approximately an hour and a half. 

Cash Payment:  

 Your earnings in this experiment are expressed in Points. At the end of the 

experiment you will be paid in Euros, using a conversion rate of 100 Points = 

60 cents.  

 Your earnings from the three parts are calculated independently for each part. 

Your total earnings from the experiment will be the sum of your payments in 

parts 1 to 3.  

Your decisions and earnings will only be known to you and are not disclosed to 

others. The information you receive will be recorded by your participant number and 

not by your name.  

The following instructions are for part 1. Prior to the start of the subsequent two parts, 

additional instructions will be given.  
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II.1 Part 1: Baseline and Team 

 

You have been randomly assigned to a group of 8 people, you and 7 other participants. 

Neither during nor after the experiment will you be informed about the identities of the 

other members in your group.  

 

Decision: In each round, each participant has to choose a number 1, 2, 3, 4, 5, 6 or 7.  

 

Earnings in every round in Part 1: The number you choose and the smallest number 

chosen by all participants in your group (including your choice) will determine the 

payoff you receive in a round.  

 

The earnings in each round may be found by looking at the table below, looking 

across from your number on the left-hand side of the table and down from the 

smallest number played by any participant in your group (including yourself) as listed 

at the top of the table. 

 

Payoff Table  

  Smallest number chosen by any participant in 

your group (including yourself) 

  7    6 5 4 3 2 1 

N
u

m
b

er
 y

o
u

 c
h

o
o

se
 7 130 110 90 70 50 30 10 

6  120 100 80 60 40 20 

5   110 90 70 50 30 

4    100 80 60 40 

3     90 70 50 

2      80 60 

1       70 

 

 

Example: 

If you choose number 4 and the smallest number chosen by other participants is 3, you 

earn 80 points in this round.  

 

Final information screen: After all decisions have been taken in a round, you will 

see an “information window” with a summary of all decision in this round. 

 

TOTAL earnings in Part 1: Your total earnings in Part 1 of the experiment will be 

the sum of all earnings in all 10 periods of Part 1.  

 

Before making decisions, you will be asked to answer a set of short control 

questions designed to check your understanding.  
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CONTROL QUESTIONS 

Consider one period: 

1. If you choose number 7 and the smallest number in your group is 7 

a) your earnings are 130 points; 

b) your earnings are 10 points; 

c) different participants in your group earn different amounts. 

(correct answer a)  

 

2. If you choose number 7 and the smallest number in your group is 4 

a) your earnings are 100 points; 

b) you earn more than the participant(s) who chose number 4; 

c) your earnings are 70 points.  

(correct answer c) 

 

3. If you choose number 4 and the smallest number in your group is 4 

a) everyone in your group must earn the same;  

b) your earnings are 100 points; 

c) participants who choose higher numbers than 4 earn more than you. 

(correct answer b)  

 

4. If you choose number 1 and the smallest number in your group is 1 

a) your earnings are 10 points; 

b) it is not possible that other participants in your group chose higher numbers than 

1; 

c) your earnings are 70 points. 

(correct answer c) 
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II.2 Part 2: Baseline 

 

Part 2 will consist of an additional 10 decision periods. You remain in the same group 

of 8 participants as in Part 1. The decision situation and the calculation of your 

payoffs is exactly the same as in Part 1 of the Experiment.  

As a reminder, we include below the payoff table again. 

 

Payoff Table  

  Smallest number chosen by any participant in 

your group (including yourself) 

  7    6 5 4 3 2 1 

N
u

m
b

er
 y

o
u

 c
h

o
o

se
 7 130 110 90 70 50 30 10 

6  120 100 80 60 40 20 

5   110 90 70 50 30 

4    100 80 60 40 

3     90 70 50 

2      80 60 

1       70 

 

TOTAL earnings in Part 2: Your total earnings in Part 2 of the experiment will be 

the sum of all earnings in all 10 periods of Part 2.  

 

 

II.3 Part 2: Team 

 

Part 2 will consist of an additional 10 decision periods. You remain in the same group 

of 8 participants as in Part 1.  

As a reminder, we include below the payoff table again. 

 

Payoff Table  

  Smallest number chosen by any participant in 

your group (including yourself) 

  7    6 5 4 3 2 1 

N
u

m
b

er
 y

o
u

 c
h

o
o

se
 7 130 110 90 70 50 30 10 

6  120 100 80 60 40 20 

5   110 90 70 50 30 

4    100 80 60 40 

3     90 70 50 

2      80 60 

1       70 
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In this part, there are 4 different phases in each round in which decisions have to be 

taken. The main difference with respect to Part 1 of the experiment is: 

A Team can form: all group members decide if they want to choose their 

number freely, that is as an Individual Participant, or jointly in a Team 

(phases 1 and 2). 

Figure 1 presents a summary of the phases that we describe in detail below.  

 

Figure 1 
 

 
 

 

Detailed description of decisions: 

 

Phase 1:  

 

Decision: You need to decide if you want to play as an Individual or in a Team.  

 If you decide to play as an Individual, your next decision is in phase 4.  

 If you decide to play as a Team, and: 

- nobody else decides to join the Team, then everyone in your group 

moves to phase 4.  

- at least one other participant decides to join the Team, then Team 

Members move to phase 2.  

 

Decision:  

Play in a Team: Press 1  Play as an Individual: Press 2 
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Phase 2:  

 

Initial Information: At the beginning of phase 2, all participants are informed about how 

many participants have decided to join the Team.  

 

Decision: Each Team Member is asked to confirm if he/she wants to remain in the 

Team.  

 If at least one Team Member does not confirm his/her Team membership, the 

Team is dissolved. Then, everyone in your group moves to phase 4.  

 If all Team Members confirm their membership, Team Members move to phase 

3.  

 

Decision of Team Members:  

Confirm membership: Press 1 Reject membership: Press 2. 

 

Final Information: At the end of phase 2, all participants in your group are informed 

about whether the Team forms or the Team does not form. 

 

Phase 3 

 

Decision: Each Team Member suggests a number 1, 2, 3, 4, 5, 6, or 7 which must be 

implemented by every Team Member in phase 4. The smallest of these numbers will 

be used as the team number which will be implemented automatically by all Team 

Members.  

 

Decision of Team Members: Suggest a team number 

Enter Value: _____ 

 

Phase 4 

Decision:  

Team members: the team number agreed in phases 3 will be automatically 

implemented.  

 

Individual participants: choose independently and freely a number 1, 2, 3, 4, 5, 6, or 

7.  

 

Decision of Individual Participants: Choose a number 

Enter value: 

 

Round earnings in Part 2: Your earnings in each round depend on the number you 

choose (as an Individual or as a Team), and the smallest number chosen by all 

participants in your group (including your choice). The payoff table describes 

earnings. 
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Final information screen: After all decisions have been taken in a round, you will 

see an “information window” with a summary of all decisions in this round.  

 

TOTAL earnings in Part 2: Your total earnings in Part 2 of the experiment will be 

the sum of all earnings in all periods of Part 2.  

 

Before making decisions, you will be asked to answer a set of short control 

questions designed to check your understanding.  

 

 

CONTROL QUESTIONS 

In a given period: 

 

1. If you are a Team Member: 

a) in phase 4 you can choose freely the number you want to select;  

b) other Team Members can force you to a team number above the number you 

would like to choose; 

c) the team number you play in phase 4 is the smallest number proposed in your  

Team. 

(correct answer c) 

 

2) If you are an Individual Participant:  

a) in phase 4 you can choose freely the number you want to select;  

b) the decision of the Team does not affect your payoff; 

c) you can determine the team number. 

(correct answer a) 

 

3. If you are a member of a Team including 8 Team Members: 

a) the payoffs are determined by the team number; 

b) different participants in your group have different earnings; 

c) the payoffs you obtain depend on the choices of Individual Participants.  

(correct answer a) 

 

4. If you are member of a Team including 6 participants: 

a) different participants in your Team can obtain different payoffs; 

b) the payoffs of Team Members are affected by the decisions of individual 

participants. 

c) the Team includes all the participants in your group.  

(correct answer b) 
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III. DETAILS ON THE (AGENT) QUANTAL RESPONSE 

EQUILIBRIUM 

This Appendix describes in detail the QRE and the AQRE analyses presented in the 

main text. This allows us to write the Testable Predictions detailed in the main text. 

Before continuing, note that the VHBB payoff function, equation (1) in the main text, 

and the FIS payoff function, equation (2), can be written as depending on �� and ����, 

i.e. as ��(��, ����) and �
(��, ����). As the remainder of the Appendix applies to both 

payoff functions, we refer to a generic payoff function �(��, ����). 

     

III.1 Correspondence without team formation (QRE) 

As in the main text, ��� denotes the probability that player i selects the provision level 

(number) j. As we focus on symmetric equilibria all players are assumed to play 

according to the same �, hence, we eliminate the subscript for the player to simplify 

notation. Thus, ��  denotes the probability of selecting j. In addition, call 
��  the 

probability that if player i selects x the minimum is y. If player i plays 1, the probability 

that the minimum is 1, is equal to 1. Hence, 
₁₁ = 1. If player i plays 2, the probability 

that the minimum is 1 is the probability that any of the other player plays 1. To calculate 

this probability, we calculate the probability that no other player selects 1, and subtract 

it from 1. Thus, 
₂₁ = 1 − (1 − �₁)ⁿ⁻¹, where n is the total number of independent 

players. By the same token, we calculate: 


₃₂ =  (1 − (1 − �₁ − �₂)ⁿ⁻¹) − 
₂₁, 


₄₃ =  (1 − (1 − �₁ − �₂ − �₃)ⁿ⁻¹) − 
₃₂ − 
₂₁, 


₅₄ =  (1 − (1 − �₁ − �₂ − �₃ − �₄)ⁿ⁻¹) − 
₄₃ − 
₃₂ − 
₂₁, 


₆₅ =  (1 − (1 − �₁ − �₂ − �₃ − �₄ − �₅)ⁿ⁻¹) − 
₅₄ − 
₄₃ − 
₃₂ − 
₂₁, 

₇₆ =  (1 − (1 − �₁ − �₂ − �₃ − �₄ − �₅ − �₆)ⁿ⁻¹) 

                        −
₆₅ − 
₅₄ − 
₄₃ − 
₃₂ − 
₂₁. 

    Using these probabilities, we calculate the expected payoffs of any number between 

1 and 7. Dropping the index for the player, we call ��(�)  the expected  payoff of 

selecting number j. These expected payoffs are calculated as follows: 

�₁(�)   =  �(1,1), 

�₂(�)   =  
₂₁�(2,1) + (1 − 
₂₁)�(2,2), 

�₃(�)   =  
₂₁�(3,1) + 
₃₂�(3,2) + (1 − 
₂₁ − 
₃₂)�(3,3), 
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�₄(�)   =  
₂₁�(4,1) + 
₃₂�(4,2) + 
₄₃�(4,3) + (1 − 
₂₁ − 
₃₂ − 
₄₃)�(4,4), 

�₅(�) = 
₂₁�(5,1) + 
₃₂�(5,2) + 
₄₃�(5,3) + 
₅₄�(5,4) 

                          +(1 − 
₂₁ − 
₃₂ − 
₄₃ − 
₅₄)�(5,5), 

�₆(�) = 
₂₁�(6,1) + 
₃₂�(6,2) + 
₄₃�(6,3) + 
₅₄�(6,4) 

                           +(1 − 
₂₁ − 
₃₂ − 
₄₃ − 
₅₄ − 
₆₅)�(6,6), 

�₇(�) = 
₂₁�(7,1) + 
₃₂�(7,2) + 
₄₃�(7,3) + 
₅₄�(7,4) + 
₆₅�(7,5) 

                          +
₇₆�(7,6) + (1 − 
₂₁ − 
₃₂ − 
₄₃ − 
₅₄ − 
₆₅ − 
₇₆)�(7,7). 
The next step is to estimate the system of equations defined in equation (3) in the main 

text. As we know that ∑ ��)*+, = 1, we use the equation for σ₁ as a reference and divide 

it by all the other equations (following Turocy 2010). This yields the following system 

of equations: 

-₁-. = /012(3)
∑ /014(3)5462

/01.(3)
∑ /014(3)5462

 = �7(�2(-)8�.(-))          ∀ : = 2. .7   (A1) 

∑ ��)*+, = 1. 

Taking the logarithm in the first six equations in (A1) we have: 

ln �₁ − ln �� = =(�₁(�) − ��(�))   ∀ : = 2. .7. 

We now conduct the following change of variables to facilitate the calculation: �� =
�>. . Hence, we finally solve the following system of equations: 

?₁ − ?�  =  =(�₁(?) − ��(?))     ∀ : = 2. .7 

∑ �>.)*+, = 1. 

To solve this system of equations, we start by observing that for = = 0 we obtain 

�� = �>. = 1 7⁄  for all j. Using this as a starting point, we trace the solution for 

progressively larger values of =, using always the equilibrium value of the previous 

value of = as a starting point. This allows us to estimate the correspondence �∗(=) for 

any value of =. Calculating this for n=8 yields the logit correspondence for the case 

without team formation. There is a unique branch that connects the centroid to the Nash 

equilibrium where players play 1 with a probability tending to 1 when λ→∞. Using the 

logit correspondence, one can calculate the provision level (minimum number) and the 

averages numbers corresponding to the logit equilibrium for each value of λ. This yields 

an equilibrium provision level below 1.37 for every λ. The reason for this is that when 

players play randomly (λ=0), the probability that one of them plays a small number is 

already high enough to bring the expected minimum number down to 1.37. As λ 
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increases, the probability of playing low numbers increases and, hence, equilibrium 

provision levels decrease and converge to 1 when λ tends to ∞. Average numbers start 

at 4 for λ=0, decrease monotonically and converge to 1. This allows us to write our 

Testable Prediction (i).  

     

III.2 Correspondence with team formation (AQRE) 

For the case with team formation, we add an additional sub-script to denote the stage. 

As we solve the problem basically by backward induction, the second stage is identical 

to the problem without team formation just described. The only difference is that �� is 

now written ��C and what was �� is now ��C. An additional difference is that we solve 

the system of equations (A1) for all values of n between 1 and 8, as it depends on the 

number of independent players (i.e., there is 1 independent player if the grand team 

forms and 8 if no team forms). Hence, we use the notation ��C∗ (=, D) to denote the 

correspondence for the second stage. This allows us to calculate the continuation values 

needed to solve the first stage. 

    Let E(=, D) denote the expected payoff associated with a team structure with n 

independent players: 

E(=, D) = F ��C∗ (=, D))
*+, ��C(�∗), for D = 1. .8. 

We further denote σ₁₁ the probability of joining the team in the first stage. To 

calculate the expected payoff from joining the team, we first calculate the probability 

that the remaining n-1 players form a team of s players, for s=1, ..., n-1. This probability, 

denoted by Pr(s,σ₁₁), is given by the following expression: 

Pr(L, �₁₁) = �₁₁(1 − �₁₁)(�8,)8M ND − 1L O. 
Using this information, we calculate the expected payoff from joining the team as 

follows: 

�₁₁(�, =) = Pr (7, �₁₁)E(=, 1) + Pr(6, �₁₁)E(=, 2)+. . . +Pr(0, �₁₁)E(=, 8). 
If a player does not join the team, the expected payoff is (note that now the grand 

team is not possible, and that the all singleton structure results when no other player 

joins the team but also when only one player joins the team): 

�C,(�, =) = Pr(7, �,,)E(=, 2) + Pr(6, �,,)E(=, 3) + ⋯ 

+(Pr(1, �₁₁) + Pr(0, �₁₁))E(=, 8). 
We then solve the following equation numerically 
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�,,(=) = Q0122(3,0)
Q0122(3,0)RQ01S2(3,0) , 

to obtain �,,∗ (=). 

    With the VHBB and the FIS payoffs, the logit equilibrium when λ→∞ is that all 

players join the team with probability close to 1, and the grand team selects the 

provision level 7. However, there is no unique branch that connects the centroid to 

exactly one Nash equilibrium. With the VHBB payoff, there are three equilibria for 

0.0838 ≤ λ ≤ 0.1004 and a unique equilibrium elsewhere. With the FIS payoff, there are 

three equilibria for 0.0786 ≤ λ ≤ 0.2478 and a unique equilibrium elsewhere. For all 

these equilibria the probability of joining the team is larger than 0.50 with both payoffs 

for any λ>0 and equal to 0.50 for λ=0. When intermediate teams are formed in 

equilibrium, minimum numbers are below 7. These results allow to write our Testable 

Prediction (ii). 

    Comparing the minimum numbers obtained with both logit correspondences yields 

our Testable Prediction (iii). 

     

III.3 Log-likelihood functions 

    For the case without team formation, we estimate the following log-likelihood 

function: 

log U(=, V) = F F V��log(�∗(=)))
�+,

W
�+, , 

where the observed empirical frequencies of strategy choices are denoted by V, and V�� 

represents the number of observations of player i choosing number j. 

    For the case with team formation, the log-likelihood function reads 

log U(=, V) = F XF V��Clog(���C∗ (=)))
�+, + F V��,log(���,∗ (=))C

�+, YW
�+, , 

where V��C represents the number of observations of player i choosing number j at stage 

2 and V��, the number of observations of player i choosing alternative j at stage 1. As 

there is no path that is continuously differentiable from 0 to ∞, as discussed in the 

previous sub-section, we use for each λ the equilibrium that is closer to the behavior 

observed in the data (see Goeree et al. 2016). 

    With and without team formation, we find the λ that maximizes the log-likelihood 

function numerically. Confidence intervals are estimated using the bootstrapping 

method (Efron, 1979; Train, 2009). This implies to create a large number of random 
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samples, with repetition, from the original sample and to repeat the maximization 

process on all these samples. The standard error, δ, is then calculated as follows: 

Z = [1\ ]=̂ − =_`C, 
where R=500 is the number of repetitions, =_ the parameter estimated for the sample 

generated in each repetition, and =̂ the parameter estimated for the original sample. 
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